If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-180x+450=0
a = 7; b = -180; c = +450;
Δ = b2-4ac
Δ = -1802-4·7·450
Δ = 19800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19800}=\sqrt{900*22}=\sqrt{900}*\sqrt{22}=30\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-30\sqrt{22}}{2*7}=\frac{180-30\sqrt{22}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+30\sqrt{22}}{2*7}=\frac{180+30\sqrt{22}}{14} $
| 7x^2+180x+450=0 | | 5y-5-3y=3y-3 | | 6X4-7x2+2=0 | | √3x2-2x-√3=0 | | (X+1)(2x+1)=(x+3)(2x+3)+14 | | 4+6x-9x2=0 | | 2-(-8c)+24-7c=c | | -6p-(-3)/8=9 | | 16-81y2-16=0 | | c2=400 | | 17(2-x)-5(x+12=8(1+7x) | | 47–3x=32 | | 81y2-y4=0 | | X2=7x-70 | | 144-4w2=0 | | 100-36x2=0 | | 1-25b2=0 | | 10x2+3x-3=0 | | 4j +1=4 | | 4x2-3x-4=0. | | 3i−4=29 | | x/1.21+2x(1.331)=1000 | | 6x^2-12x-51=0 | | X=3x+5= | | 15h−4=131 | | x-6/5=-1 | | 4u+10=7 | | 5i−7=43 | | 10b+8=158 | | -2x=3/5 | | 9÷20x-4÷9x=60 | | y2+17y+74=0 |